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Abstract 
Document organization is an important part of the broad field of Information Retrieval.  
Since documents can contain similar content, organizing similar documents on some 
display can allow a user to gain more desired information.  Self-Organizing Maps present 
a useful method for performing this organization based on content.  In this paper, a 
learning agent-based approach is taken to organize an arbitrary set of HTML documents 
and display it to the user.  A system of four interchangeable agents is presented that 
promotes flexibility and extensibility. 

Introduction 
Information Retrieval (Chowdhury 1999) is a very broad area of research.  Its goal is 
mainly to provide efficient and accurate information to a user.  For instance, modern 
Internet search engines use Information Retrieval (IR) techniques to allow web surfers to 
find web pages containing certain desired information.  The user enters a query, and the 
search engine provides a ranked list of web pages that should provide the information the 
user is looking for. 
 
A basic object containing information is the document.  A document is basically a 
collection of words that relate to some subject, and this subject can usually be inferred 
from the words in a document.  There are many kinds of documents, in many different 
formats.  In this paper, only HTML documents are considered. 
 
Organizing documents in such a way that aids the user’s search for information is a major 
part of IR.  If a certain document were helpful to the user, perhaps similar documents 
would also be of help.  Thus, a way to compare documents and group them together 
based on their contents is needed. 
 
Recently, the Self-Organizing Map (SOM) has proven extremely useful for organizing 
documents (Kohonen 2000).  SOM is an unsupervised learning method for approximating 
the distribution of a high dimensional set of data with a low dimensional grid of points 
(Kohonen 2001).  It basically performs a non-parametric regression over the data set and 
then does non-linear projection from the high dimensional input space to a low 
dimensional feature space.  This projection retains the original structure of the data so 
that data points near each other in input space are projected onto neighboring regions of 
the map in feature space. 
 
By representing each document as a vector in a high dimensional space, the SOM can 
organize the documents on a two dimensional grid of points such that similar documents 



will be mapped to nearby points on the grid.  This organization can direct the user to 
similar documents. 
 
This project is mainly based on an idea from (Roussinov, Tolle et al. 1999).  In their 
paper, they created a system to retrieve search results from the AltaVista search engine 
(http://www.altavista.com) and use SOM to organize the documents on a grid for display.  
Extending this idea to any arbitrary HTML documents can create a more general and 
flexible system. 
 
A set of interacting agents is defined to handle the different parts of the document 
organization system, each having its own responsibilities.  A learning agent, using SOM, 
learns about the documents in the collection and organizes them according to their 
content.  Different specific types of these agents can be interchanged, providing different 
types of behavior.  Also, new types of agents can be easily added to the system to 
experiment with new ideas.  The Jsom package was created, in part, to handle the usage 
of SOM for the project. 

Self-Organizing Maps 
The SOM (Kohonen 2001) is an unsupervised neural network and can be used for non-
parametric regression, non-linear projection, dimensionality reduction, feature extraction, 
clustering, and visualization depending on the interpretation and use of its results.  Figure 
1 below shows a typical architecture of the neural network. 
 

 
Figure 1.  The SOM as an unsupervised neural network.  The SOM consists of an input layer, where 
the input patterns are presented, and an output layer of connected neurons.  These neurons exist as 

discrete points in some space, in this case 2-D, and each neuron has a weight vector of the same 
dimensionality as the input patterns. 

 



Each neuron, or node, in the output layer has two vectors associated with it that exist in 
two different spaces: feature space and input space.  Feature space is the space in which 
the nodes exist and input space is the space in which the data exists.  The first vector 
describes the position of the node in feature space, and the second represents the weight 
vector of the neuron.  Each neuron has a weight associated with each input variable; the 
lines in Figure 1 represent these weights, and together they form a vector of the same 
dimensionality as the input data.  These weight vectors can also be represented as points 
in input space; in this case, they are referred to as models since they are the input space 
representation of the nodes.  When referring to the map as a neural network, it is natural 
to refer to neurons and weight vectors; when referring to points in feature space and input 
space, nodes and models are used instead. 
 
The goal of the SOM algorithm is to adjust the weight vectors of the neurons to match the 
training data.  One can also think of this as positioning the models of the nodes in input 
space to match the distribution of the data.  The algorithm attempts to do this so that 
nodes near each other in feature space will have models near each other in input space.  
Positioning the models to approximate the data distribution can be thought of as non-
parametric regression, much like discretized principal curves (Hastie and Stuetzle 1989).  
The trained map can then perform non-linear projection of data points in input space, by 
finding the nearest model to the data point and projecting the point onto the model’s node 
in feature space. 
 
Note that the SOM algorithm is not restricted to working with strictly numerical data.  
Patterns can be anything, such as text strings or documents.  The algorithm just needs to 
create model patterns for the nodes, and make these models approximate the distribution 
of the data in an ordered fashion.  The algorithm is iterative, and fairly simple: 
 
For each iteration k 
 Pick a data point x(k) 
 Find node c with closest model mi(k) to x(k) 

 Update each model mi(k) 

 
So during iteration k, the algorithm finds the node c with the most similar model to data 
point x in the input space.  Then all of the models are updated by moving them towards 
the data point x.  The neighborhood function n(c,i,k) returns a scaling value that 
determines how far each model moves toward x.  The model of node c moves the farthest 
towards x while models of nodes farther away from c in feature space move less towards 
x in input space (models of nodes “very far away” from c may not move at all).  Also, 
n(c,i,k) goes to zero as k increases so that the models “learn” quickly in the beginning and 
then are more finely adjusted in later iterations.   
 
Thus, n(c,i,k) decreases with both increasing distance between nodes c and i in feature 
space, and with increasing k.  It is this property of the neighborhood function that ensures 
neighboring models in input space will belong to neighboring nodes in feature space, and 
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the non-linear projection from input space to feature space will retain the original 
structure of the data. 
 
Many other ways to position the models in input space exist; thus, the previous algorithm 
is not unique.  Many variants on this original SOM algorithm can be found in the 
literature (Kohonen 2001), and will not be presented here. 

Jsom 
Jsom is a Java-based package for working with Self-Organizing Maps.  Utilizing object-
oriented and smart software design principles (Gamma, Helm et al. 1995) (Bloch 2001), 
it is intended to be incredibly easy to use in a variety of applications, from pure number 
crunching to interactive demos, while also being very flexible and supportive of 
customization.  A collection of Java interfaces specifies the different parts involved in the 
SOM algorithm, and is backed by fully functioning default implementation classes, ready 
for use by the user.  Custom implementations are easily integrated into the existing class 
structure since the API refers to interfaces, not concrete classes. 
 
There are four main interfaces in the Jsom package: Algorithm, Data, Map, and 
Parameters.  These represent exactly what they are named for:  the SOM algorithm, the 
training data, the map (nodes and models), and any parameters used by the algorithm, 
respectively.  Figure 2 below shows a UML diagram for these interfaces.   
 
Many concrete implementations of these classes, performing basic functionality, are also 
provided in the Jsom package.  For instance, the following code is a complete program to 
read the training data, initial models, node positions, and node adjacency from files, train 
the map, and print out the resulting models: 
 
import java.io.*; 
import jsom.*; 
import jsom.data.*; 
import jsom.algorithm.*; 
import jsom.algorithm.parameters.*; 
 
public class jsomTest { 
  
 public jsomTest() { 
  Data data = new FileDoubleData(new File("data.txt")); 
  DoubleData nodes = new FileDoubleData(new File("nodes.txt")); 
  DoubleData models = new FileDoubleData(new File("models.txt")); 
  IntegerData adjMatrix = new FileIntegerData(new File("adjMatrix.txt")); 
  Map map = new BasicMap(nodes, models, adjMatrix); 
   
  int iterations = 10000; 
  double initialValue = 0.9d, finalValue = 0.0001d; 
  Metric metric = EuclideanDoubleMetric.getInstance(); 
  ModelUpdater updater = FlowDoubleModelUpdater.getInstance(); 
  LearningRate rate = ExponentialLearningRate.getInstance(initialValue,  

finalValue, iterations); 
  Neighborhood neighborhood = GaussianDoubleNeighborhood.getInstance(rate); 
  PatternSelector selector = BasicPatternSelector.getInstance(); 
  Parameters params = new FlowParameters(iterations, metric, updater,  

neighborhood, selector); 
   
  Algorithm algorithm = new FlowAlgorithm(data, map, params); 
  algorithm.start(); 
   
  System.out.println("models = "); 
  for (int i=0; i<map.count(); i++) { 



   System.out.println("" + i + " = " + map.getModel(i).getPattern()); 
  } 
 } 
  
 public static void main(String args[]) { 
  new jsomTest(); 
 } 
  
} 
 
Specifying these components as interfaces instead of classes creates a very flexible API.  
For instance in the above code example, a FileDoubleData instance is created, which 
implements the Data interface, and is given to the Algorithm.  Any other concrete Data 
implementation could have been used to provide training data to the algorithm.  For 
example, BasicDoubleData, which just wraps a double[][], could have also been used.  
Or, a user could define a custom Data implementation, and give that to the algorithm as 
training data.  This custom implementation could access any data source, such as a 
database or some existing data object. 
 

 
Figure 2.  UML diagram for the four main interfaces in the Jsom package. 

 
The interfaces in Figure 2 also reference several other interfaces: Pattern, Node, and 
Model.  These interfaces represent patterns, nodes, and models of the SOM, respectively, 
and are shown in Figure 3.  Again, Jsom can use any class implementing the Pattern 
interface.  A default implementation, DoublePattern which just wraps a double[], is 
provided with Jsom.  However, a class representing a text string could also implement 
Pattern and be used by Jsom.  In this case, a custom Algorithm would also need to be 
created, to handle the new type of Pattern. 
 



 
Figure 3.  UML diagram for basic data structure interfaces. 

 
Jsom also provides support for event notification (via the AlgorithmListener interface 
and AlgorithmEvent class), multi-threaded use (via the RunnableAlgorithm wrapper 
class), and more fine-controlled algorithms (via the ControllableAlgorithm interface).  
A complete software design description is beyond the scope of this paper, although the 
above descriptions give a flavor of the overall API design.  For more information, please 
see the Jsom website at http://www.public.iastate.edu/~zcox/jsom/. 

Vector Space Representation of Documents 
A document is a collection of words.  A vector, whose components represent the 
frequency of words in the document, can represent a document numerically.  In order to 
compare documents by their vectors, all of the vectors must be of the same length, and 
their elements must represent frequencies of the same words.  Therefore each element 
represents a unique word in the entire collection of documents, which each individual 
document may or may not contain.  Typically, there are many zeros in these vectors since 
documents tend to contain different words. 
 
In any sizable collection of documents, this set of possible words is very large.  This 
makes the dimensionality of the document vectors very large as well.  Computationally, 
working with vectors with dimensionality in the tens to hundreds of thousands is not 
efficient.  There are, however, methods of greatly reducing the dimensionality of the 
document vectors. 
 
(Kaski 1998) recently published a method for projecting vectors to a lower 
dimensionality such that similarity calculations between two vectors is the same in both 
spaces.  This results in greatly reduced dimensionality of the document vectors, while 
still retaining information used to compare the documents.  This method is implemented 
this project. 

System of Agents 
There are several different parts to the document organization project, and an appropriate 
agent can carry out each part.  These different agents are specified as Java interfaces to 
promote flexibility; different implementations can then be used safely to provide different 
overall functionality.  The UML diagram in Figure 4 shows these interfaces. 



 

 
Figure 4.  UML diagram of the four agent types. 

 
The CollectionAgent is responsible for obtaining the HTML documents, and providing 
them to the rest of the system.  The documents can be from any source, as long as they 
are formatted in HTML.  Figure 5 below shows two possible implementations of the 
CollectionAgent interface.  AltaVistaCollectionAgent queries the AltaVista Internet 
search engine with a user-provided String, and provides the resulting HTML documents 
in a Collection returned by the getDocuments() method.  DirectoryCollectionAgent, on 
the other hand, returns all of the HTML files in a specified directory.  The documents are 
referred to by URL objects so that local copies are not needed, as this could consume a 
great deal of memory.  Since both classes implement the CollectionAgent interface, they 
can be used interchangeably to provide different functionality. 
 

 
Figure 5.  Two different implementations of the CollectionAgent interface. 

 
The AnalysisAgent is responsible for creating the vectors for each document, based on 
their word contents.  Two implementations were created in this project, as shown in 
Figure 6.  BasicAnalysisAgent simply creates a weighted histogram, or word frequency 
vector, for each document.  ProjectionAnalysisAgent performs the projection described in 
(Kaski 1998) to reduce the dimensionality of the vectors.  It should also be noted that 
these two agents only use the text of the HTML documents, not the formatting tags.  The 
javax.swing.text.html package provides excellent support for HTML parsing. 
 



 
Figure 6.  Two different implementations of the AnalysisAgent interface. 

 
Figure 6 also refers to the HTMLData interface.  HTMLData extends the Jsom Data 
interface, to support HTMLPattern objects.  HTMLPattern stores a double[] as its 
document vector, as well as some other information.  These classes are shown below in 
Figure 7.  Because they extend basic Jsom types, they can be integrated into Jsom and 
used in the SOM algorithm. 
 

 
Figure 7.  Classes for storing the HTML documents as patterns. 

 
Once the documents are converted to vector form, an OrganizationAgent uses a SOM to 
organize the documents onto a two-dimensional grid.  BasicOrganizationAgent, shown in 
Figure 8, uses the Jsom package.  It returns a Jsom Map object, which represents the 
nodes and models of the trained map.  This agent effectively learns about the documents 
in the collection, and organizes them according to their content.  Documents with similar 
content are assigned to nearby nodes in the map. 
 



 
Figure 8.  Implementation of the OrganizationAgent interface. 

 
The DisplayAgent handles the display of the trained map and organized documents.  The 
implementation in this project, BasicDisplayAgent, extends the JPanel class so that it can 
be easily added to any Swing user interface.  This is shown in Figure 9 below.  It consists 
of three display areas: the map view, the document list, and the document view.  The map 
shows the organization of documents, with keywords displayed for nodes with 
documents.  The keyword selection algorithm is described in (Lagus and Kaski 1999). 
 

 
Figure 9.  Implementation of the DisplayAgent interface. 

 
So far, only the four agent types and a few implementations have been discussed.  These 
are highly reusable components; each one does a specific job and they can be combined 
in different ways to get different functionality.  Figure 10 below shows a screenshot of an 
example application that uses the agents to visualize results of a search from the 
AltaVista search engine on a 2-D grid of points. 
 



 
Figure 10.  Screenshot of the document organizer application.  The top left is the map view, the 

bottom left is the document list, and the right is the document view. 

 
The document organizer application does very little work on its own.  It is a JFrame with 
a BasicDisplayAgent in the center of its content pane, and simply creates the agents and 
passes their results between them.  For example, the following code shows what happens 
when the user clicks the “enter” button. 
 
 
System.out.println("collecting documents..."); 
CollectionAgent collector = new AltaVistaCollectionAgent( 
_searchString.getText(), 200); 
Collection documents = collector.getDocuments(); 
System.out.println("got " + documents.size() + " documents"); 
   
System.out.println("analyzing documents..."); 
AnalysisAgent analyzer = new ProjectionAnalysisAgent(new 
StemmedStopList(), 5, 315); 
HTMLData data = analyzer.analyzeDocuments(documents); 
   
System.out.println("organizing documents..."); 
OrganizationAgent organizer = new BasicOrganizationAgent(); 
((BasicOrganizationAgent) organizer).setMapParameters(10, 10, 
BasicOrganizationAgent.RECTANGULAR); 
Map map = organizer.organizeDocuments(data); 
   
System.out.println("displaying documents..."); 
_display.displayDocuments(data, map); 



Results 
Documents that contain words that are not present in all the documents in the collection 
should be mapped onto neighboring nodes.  The SOM does seem to do this, as shown in 
Figure 11 and Figure 12 below.  The two web pages shown are lists of publications for 
Christopher Burges.  No other HTML documents in the collection contain his name.  
Thus, the SOM correctly mapped these two documents to the same node.  The third 
document in that node, http://www.cvc.uab.es/~jordi/pmor/tsld236.htm, was a broken 
link and should be removed by a preprocessing step; there simply wasn’t enough time to 
code this. 
 

 
Figure 11.  First document containing Christopher Burges. 

 



 
Figure 12.  Second document containing Christopher Burges. 

 
Another good example is the documents shown in Figure 13 and Figure 14 below.  They 
are the only documents in the collection discussing things like probabilistic models and 
maximum likelihood.  A strange phenomenon is that the node they’re projected onto is 
labeled “platt” although only one document contains this word (it’s the last name of a 
researcher for Microsoft, who owns the page shown in Figure 14. 
 

 
Figure 13.  First document containing probabilistic models and maximum likelihood. 



 

 
Figure 14.  Second document containing probabilistic models and maximum likelihood. 

 
The SOM did seem to project documents with distinguishing words onto the same node 
in the map.  However, it wasn’t always clear if documents in neighboring nodes were 
similar, or if they just happened to be projected onto neighboring nodes.  Another useful 
view in the application would be a list of keywords for a node, like the list of url’s, 
instead of just drawing a single keyword on the map. 

Conclusions 
This paper described a system of four types of agents, and how they can be used together 
to organize any set of HTML documents using Self-Organizing Maps.  In effect, the 
OrganizationAgent learns about the documents in the collection and based on the 
contents, assigns documents to discrete points in a two dimensional space.  Documents 
with similar content are assigned to the same points. 
 
This is a very rough implementation of several recently developed concepts in 
Information Retrieval.  For example, the WEBSOM project 
(http://websom.hut.fi/websom/) has used SOM to organize massive document collections, 
on the order of millions of documents, and provides a web-based user interface for 
exploring the map.  The system presented here is much smaller, but also performs the 
mapping in real time on any decent computer and allows the user to organize their own 
set of documents. 
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