A System of Intelligent Agents for
Organizing HTML Documents

Zach Cox
ComS 572 Final Project
Fall 2001

Abstract

Document organization is an important part of the broad field of Information Retrieval.
Since documents can contain similar content, organizing similar documents on some
display can allow a user to gain more desired information. Self-Organizing Maps present
a useful method for performing this organization based on content. In this paper, a
learning agent-based approach is taken to organize an arbitrary set of HTML documents
and display it to the user. A system of four interchangeable agents is presented that
promotes flexibility and extensibility.

Introduction

Information Retrieval (Chowdhury 1999) is a very broad area of research. Its goal is
mainly to provide efficient and accurate information to a user. For instance, modern
Internet search engines use Information Retrieval (IR) techniques to allow web surfers to
find web pages containing certain desired information. The user enters a query, and the
search engine provides a ranked list of web pages that should provide the information the
user is looking for.

A basic object containing information is the document. A document is basically a
collection of words that relate to some subject, and this subject can usually be inferred
from the words in a document. There are many kinds of documents, in many different
formats. In this paper, only HTML documents are considered.

Organizing documents in such a way that aids the user’s search for information is a major
part of IR. If a certain document were helpful to the user, perhaps similar documents
would also be of help. Thus, a way to compare documents and group them together
based on their contents is needed.

Recently, the Self-Organizing Map (SOM) has proven extremely useful for organizing
documents (Kohonen 2000). SOM is an unsupervised learning method for approximating
the distribution of a high dimensional set of data with a low dimensional grid of points
(Kohonen 2001). It basically performs a non-parametric regression over the data set and
then does non-linear projection from the high dimensional input space to a low
dimensional feature space. This projection retains the original structure of the data so
that data points near each other in input space are projected onto neighboring regions of
the map in feature space.

By representing each document as a vector in a high dimensional space, the SOM can
organize the documents on a two dimensional grid of points such that similar documents

will be mapped to nearby points on the grid. This organization can direct the user to
similar documents.

This project is mainly based on an idea from (Roussinov, Tolle et al. 1999). In their
paper, they created a system to retrieve search results from the AltaVista search engine
(http://www .altavista.com) and use SOM to organize the documents on a grid for display.
Extending this idea to any arbitrary HTML documents can create a more general and
flexible system.

A set of interacting agents is defined to handle the different parts of the document
organization system, each having its own responsibilities. A learning agent, using SOM,
learns about the documents in the collection and organizes them according to their
content. Different specific types of these agents can be interchanged, providing different
types of behavior. Also, new types of agents can be easily added to the system to
experiment with new ideas. The Jsom package was created, in part, to handle the usage
of SOM for the project.

Self-Organizing Maps
The SOM (Kohonen 2001) is an unsupervised neural network and can be used for non-
parametric regression, non-linear projection, dimensionality reduction, feature extraction,

clustering, and visualization depending on the interpretation and use of its results. Figure
1 below shows a typical architecture of the neural network.

Xy

Input layer Output layer

Figure 1. The SOM as an unsupervised neural network. The SOM consists of an input layer, where
the input patterns are presented, and an output layer of connected neurons. These neurons exist as
discrete points in some space, in this case 2-D, and each neuron has a weight vector of the same
dimensionality as the input patterns.

Each neuron, or node, in the output layer has two vectors associated with it that exist in
two different spaces: feature space and input space. Feature space is the space in which
the nodes exist and input space is the space in which the data exists. The first vector
describes the position of the node in feature space, and the second represents the weight
vector of the neuron. Each neuron has a weight associated with each input variable; the
lines in Figure 1 represent these weights, and together they form a vector of the same
dimensionality as the input data. These weight vectors can also be represented as points
in input space; in this case, they are referred to as models since they are the input space
representation of the nodes. When referring to the map as a neural network, it is natural
to refer to neurons and weight vectors; when referring to points in feature space and input
space, nodes and models are used instead.

The goal of the SOM algorithm is to adjust the weight vectors of the neurons to match the
training data. One can also think of this as positioning the models of the nodes in input
space to match the distribution of the data. The algorithm attempts to do this so that
nodes near each other in feature space will have models near each other in input space.
Positioning the models to approximate the data distribution can be thought of as non-
parametric regression, much like discretized principal curves (Hastie and Stuetzle 1989).
The trained map can then perform non-linear projection of data points in input space, by
finding the nearest model to the data point and projecting the point onto the model’s node
in feature space.

Note that the SOM algorithm is not restricted to working with strictly numerical data.
Patterns can be anything, such as text strings or documents. The algorithm just needs to
create model patterns for the nodes, and make these models approximate the distribution
of the data in an ordered fashion. The algorithm is iterative, and fairly simple:

For each iteration k
Pick a data point x(k)
Find node c with closest model m, (k) to x(k)

c=arg mjnﬂ|x(k) - ml.(k)”]
Update each model m, (k)
m, (k+1) =m, (k) +n(c,i,k) *[x(k)—m, (k)]

So during iteration &, the algorithm finds the node ¢ with the most similar model to data
point x in the input space. Then all of the models are updated by moving them towards
the data point x. The neighborhood function n(c,i,k) returns a scaling value that
determines how far each model moves toward x. The model of node ¢ moves the farthest
towards x while models of nodes farther away from c in feature space move less towards
x in input space (models of nodes “very far away” from ¢ may not move at all). Also,
n(c,i,k) goes to zero as k increases so that the models “learn” quickly in the beginning and
then are more finely adjusted in later iterations.

Thus, n(c,i,k) decreases with both increasing distance between nodes ¢ and i in feature
space, and with increasing k. It is this property of the neighborhood function that ensures
neighboring models in input space will belong to neighboring nodes in feature space, and

the non-linear projection from input space to feature space will retain the original
structure of the data.

Many other ways to position the models in input space exist; thus, the previous algorithm
is not unique. Many variants on this original SOM algorithm can be found in the
literature (Kohonen 2001), and will not be presented here.

Jsom

Jsom is a Java-based package for working with Self-Organizing Maps. Utilizing object-
oriented and smart software design principles (Gamma, Helm et al. 1995) (Bloch 2001),
it is intended to be incredibly easy to use in a variety of applications, from pure number
crunching to interactive demos, while also being very flexible and supportive of
customization. A collection of Java interfaces specifies the different parts involved in the
SOM algorithm, and is backed by fully functioning default implementation classes, ready
for use by the user. Custom implementations are easily integrated into the existing class
structure since the API refers to interfaces, not concrete classes.

There are four main interfaces in the Jsom package: Algorithm, Data, Map, and
Parameters. These represent exactly what they are named for: the SOM algorithm, the
training data, the map (nodes and models), and any parameters used by the algorithm,
respectively. Figure 2 below shows a UML diagram for these interfaces.

Many concrete implementations of these classes, performing basic functionality, are also
provided in the Jsom package. For instance, the following code is a complete program to
read the training data, initial models, node positions, and node adjacency from files, train
the map, and print out the resulting models:

import java.io.*;

import jsom.*;

import jsom.data.*;

import jsom.algorithm.*;

import jsom.algorithm.parameters.*;

public class jsomTest {

public jsomTest () {
Data data = new FileDoubleData(new File("data.txt"));
DoubleData nodes = new FileDoubleData(new File("nodes.txt"));
DoubleData models = new FileDoubleData(new File("models.txt"));
IntegerData adjMatrix = new FileIntegerData(new File("adjMatrix.txt"));
Map map = new BasicMap (nodes, models, adjMatrix) ;

int iterations = 10000;

double initialvalue = 0.9d, finalvalue = 0.0001d;

Metric metric = EuclideanDoubleMetric.getInstance() ;

ModelUpdater updater = FlowDoubleModelUpdater.getInstance() ;

LearningRate rate = ExponentialLearningRate.getInstance(initialvalue,
finalvalue, iterations) ;

Neighborhood neighborhood = GaussianDoubleNeighborhood.getInstance (rate) ;

PatternSelector selector = BasicPatternSelector.getInstance();

Parameters params = new FlowParameters(iterations, metric, updater,
neighborhood, selector) ;

Algorithm algorithm = new FlowAlgorithm(data, map, params) ;
algorithm.start () ;

System.out.println("models = ");
for (int i=0; i<map.count(); 1i++) {

System.out.println("" + i + " = " + map.getModel (i) .getPattern());

}

public static void main(String argsl[]) {
new jsomTest () ;

}

Specifying these components as interfaces instead of classes creates a very flexible API.
For instance in the above code example, a FileDoubleData instance is created, which
implements the pata interface, and is given to the Algorithm. Any other concrete bata
implementation could have been used to provide training data to the algorithm. For
example, BasicDoubleData, wWhich just wraps a double[] [], could have also been used.
Or, a user could define a custom pata implementation, and give that to the algorithm as
training data. This custom implementation could access any data source, such as a
database or some existing data object.

<<Interfacess <iinterfaces:
Aqarithm Peepee }:J Oata

+getDatal) - Data ! +zount() ©int

+ethiap) : hap : +get(index:int) : Pattemn

+get Parameters) : Parameters 1 +zetiindexint, pattern: Pattem)

+iz Beecauting) ; boolean :
|
I
|

+zet Dataidata: Oata)

+sethiap(map hiap)

+s6t Parametersiparameters: Parameters)
+start() Lo
+stopi)

<{Interfacesx
hisp

'

+zount) ;int

+etAdjacent Nodes(ndes:int) ; kerator
+getindexmodel hdadel) : int
+getindexinode: Mode) : int
+gethdodel(nde int) : hiodel

+get Modedndex:int) : Mode

+zetPdjacent Modesndes:int, nodes:Set)
+zethiedeljndex:int, model:hodel)

+zet Mode(ndex;int, node:Node))

<<Interfaces
s
A Parameaters

Figure 2. UML diagram for the four main interfaces in the Jsom package.

The interfaces in Figure 2 also reference several other interfaces: Pattern, Node, and
Model. These interfaces represent patterns, nodes, and models of the SOM, respectively,
and are shown in Figure 3. Again, Jsom can use any class implementing the pattern
interface. A default implementation, DoublePattern which just wraps a double[], is
provided with Jsom. However, a class representing a text string could also implement
pattern and be used by Jsom. In this case, a custom Algorithm would also need to be
created, to handle the new type of Pattern.

<interfacesr <ilnterfacer
Pattemn -\/:———— Mode F—-—-1
+gethdadel) : hiadel q{- =

q{_ +get Patterni) : Pattem
+eethdodelmodal hiadal)

<dInterface
- hiodel po=d
+get Mode() : Mode <—: ===
+get Pattemi() ; Pattem
+zet Hode(node: Mode)

Figure 3. UML diagram for basic data structure interfaces.

Jsom also provides support for event notification (via the AlgorithmListener interface
and AlgorithmEvent class), multi-threaded use (via the RunnableAlgorithm wrapper
class), and more fine-controlled algorithms (via the Controllablealgorithm interface).
A complete software design description is beyond the scope of this paper, although the
above descriptions give a flavor of the overall API design. For more information, please
see the Jsom website at http://www.public.iastate.edu/~zcox/jsom/.

Vector Space Representation of Documents

A document is a collection of words. A vector, whose components represent the
frequency of words in the document, can represent a document numerically. In order to
compare documents by their vectors, all of the vectors must be of the same length, and
their elements must represent frequencies of the same words. Therefore each element
represents a unique word in the entire collection of documents, which each individual
document may or may not contain. Typically, there are many zeros in these vectors since
documents tend to contain different words.

In any sizable collection of documents, this set of possible words is very large. This
makes the dimensionality of the document vectors very large as well. Computationally,
working with vectors with dimensionality in the tens to hundreds of thousands is not
efficient. There are, however, methods of greatly reducing the dimensionality of the
document vectors.

(Kaski 1998) recently published a method for projecting vectors to a lower
dimensionality such that similarity calculations between two vectors is the same in both
spaces. This results in greatly reduced dimensionality of the document vectors, while
still retaining information used to compare the documents. This method is implemented
this project.

System of Agents

There are several different parts to the document organization project, and an appropriate
agent can carry out each part. These different agents are specified as Java interfaces to
promote flexibility; different implementations can then be used safely to provide different
overall functionality. The UML diagram in Figure 4 shows these interfaces.

dnterface:: ddlnterface::
CollectionAgent Aoalysizfgent
+get Documents() @ Collection +analyze Documentz(documents: Collection’) © HThLData
<<dnterface > interfacerr
OrganizationAgent Dizplay Agerit
+organize Documents{documents : HThLData)) : hiap +display Documentsidocuments :HThiLData, map:hiap)

Figure 4. UML diagram of the four agent types.

The CollectionAgent is responsible for obtaining the HTML documents, and providing
them to the rest of the system. The documents can be from any source, as long as they
are formatted in HTML. Figure 5 below shows two possible implementations of the
CollectionAgent interface. AltaVistaCollectionAgent queries the AltaVista Internet
search engine with a user-provided String, and provides the resulting HTML documents
in a Collection returned by the getDocuments() method. DirectoryCollectionAgent, on
the other hand, returns all of the HTML files in a specified directory. The documents are
referred to by URL objects so that local copies are not needed, as this could consume a
great deal of memory. Since both classes implement the CollectionAgent interface, they
can be used interchangeably to provide different functionality.

<tnmterface »»
CollectionAgent

+get Document=() ; Collection

|

_________ e e e —

| |

| 1

Altatdsta CollectionSgent Directory Coll=ctionAgent

-_altawista : URL -directory : Fila
-_documerts : Collection -documents . Collection
-_query : String +get Directory(: File
+get Documents) . Collection +get Documents) : Collection
Hget Queny(() @ String
+etURLD : URL
+HaoString () : String

Figure 5. Two different implementations of the CollectionAgent interface.

The AnalysisAgent is responsible for creating the vectors for each document, based on
their word contents. Two implementations were created in this project, as shown in
Figure 6. BasicAnalysisAgent simply creates a weighted histogram, or word frequency
vector, for each document. ProjectionAnalysisAgent performs the projection described in
(Kaski 1998) to reduce the dimensionality of the vectors. It should also be noted that
these two agents only use the text of the HTML documents, not the formatting tags. The
javax.swing.text.html package provides excellent support for HTML parsing.

dinterfaces:
FPnalysizfgent
+analyze Documents(decuments: Collection’) : HThLData
|
_________________ U
| |
1 1
BasicAnaly sisAgent ProjectionAnaly sis Agent
+analyze Documernts(documents : Collection) : HThLData +analyze Documents(documents : Collection’) : HThLData

Figure 6. Two different implementations of the AnalysisAgent interface.

Figure 6 also refers to the HTMLData interface. HTMLData extends the Jsom Data
interface, to support HTMLPattern objects. HTMLPattern stores a double[] as its
document vector, as well as some other information. These classes are shown below in
Figure 7. Because they extend basic Jsom types, they can be integrated into Jsom and
used in the SOM algorithm.

<dnterface x> <tnterfaces >
Data Pattem
+zount() : int
+Hget(ndexint) ; Pattem
+set(ndex:int, pattem:Pattem) ‘&
|
|
i
<¢Interface:> DoublePattam
HThLData

+getHThLPattemindex;int] : HTMLPattem -pattem : double[]

+zet HThLPattemiindex:int, pattem:HThLPattem)

|

|

|

1

BaszicHThwLData HTWLPattem
-pattems : List -counts : hiap

-url : URL
+get Count=() : hiap
+3etURLY : URL

Figure 7. Classes for storing the HTML documents as patterns.

Once the documents are converted to vector form, an OrganizationAgent uses a SOM to
organize the documents onto a two-dimensional grid. BasicOrganizationAgent, shown in
Figure 8, uses the Jsom package. It returns a Jsom Map object, which represents the
nodes and models of the trained map. This agent effectively learns about the documents
in the collection, and organizes them according to their content. Documents with similar
content are assigned to nearby nodes in the map.

<dinterfaces:
Organization.Agert
+organize Documentsidocuments : HThLData) : hep

Basic OrganizationAgent

+arganize Documents(document = :HThLData) : hap

Figure 8. Implementation of the OrganizationAgent interface.

The DisplayAgent handles the display of the trained map and organized documents. The
implementation in this project, BasicDisplayAgent, extends the JPanel class so that it can
be easily added to any Swing user interface. This is shown in Figure 9 below. It consists
of three display areas: the map view, the document list, and the document view. The map
shows the organization of documents, with keywords displayed for nodes with
documents. The keyword selection algorithm is described in (Lagus and Kaski 1999).

JPanel <<Intarface >
Di=play Agent
+isplay Documernts(documents :HThWLData, map:hap)
|
r————---—-- -
|
1
Basic Display Agent

+lisplay Documents(documents HTiLData, map:hap)

Figure 9. Implementation of the DisplayAgent interface.

So far, only the four agent types and a few implementations have been discussed. These
are highly reusable components; each one does a specific job and they can be combined
in different ways to get different functionality. Figure 10 below shows a screenshot of an
example application that uses the agents to visualize results of a search from the
AltaVista search engine on a 2-D grid of points.

Egidncument organizer ;IEIEI

search string [support vector machines| | enter

book
L - * - - * * * * -
exampl eddi ? =
* - * - * * * * * - -
copdit slide pedroso christoph 0 g
] * - * * * * * 1) . . .
o —_— - om [l . Computer Science - Artificial Intelligence
* . * . * * * * * L]
recognit point featur
* * L] * * * * L]
* . * . * o SN o4 s,

* L] L L] L - - - - -

- * * * * - mySVM

o h\peyzlanu o

L mySVM - a support vector machine

by Stefan Riping, mueping@ls8 cs.uni-dortmund. de

var algosithm acm
* * * *

... News
hitpeiiwn.csee UG edu.aui~seminatarchive/serm-0379.html H

httpciiwaani.cgie . niu.edu.twd~cjlindib svmi
hitp:iflite.cpdee.ufma.hrf
hittp:Masity- 3005 UNi-dotmund.defSOF TWAREMYSYT

® Download the latest release of my3VIV (Wersion 2.1.1, Novernber 7th, 2001)
* Download the bitary version for Windows
® Seea list of changes

About mySVM

B
[¥]

{]

Figure 10. Screenshot of the document organizer application. The top left is the map view, the
bottom left is the document list, and the right is the document view.

The document organizer application does very little work on its own. It is a JFrame with
a BasicDisplayAgent in the center of its content pane, and simply creates the agents and
passes their results between them. For example, the following code shows what happens
when the user clicks the “enter” button.

System.out.println("collecting documents...");
CollectionAgent collector = new AltaVistaCollectionAgent (
_searchString.getText (), 200);

Collection documents = collector.getDocuments () ;
System.out.println("got " + documents.size() + " documents");
System.out.println("analyzing documents...");

AnalysisAgent analyzer = new ProjectionAnalysisAgent (new
StemmedStopList (), 5, 315);
HTMLData data = analyzer.analyzeDocuments (documents) ;

System.out.println("organizing documents...");
OrganizationAgent organizer = new BasicOrganizationAgent () ;
((BasicOrganizationAgent) organizer) .setMapParameters (10, 10,
BasicOrganizationAgent .RECTANGULAR) ;

Map map = organizer.organizeDocuments (data) ;

System.out.println("displaying documents...");
_display.displayDocuments (data, map) ;

Results

Documents that contain words that are not present in all the documents in the collection
should be mapped onto neighboring nodes. The SOM does seem to do this, as shown in
Figure 11 and Figure 12 below. The two web pages shown are lists of publications for
Christopher Burges. No other HTML documents in the collection contain his name.
Thus, the SOM correctly mapped these two documents to the same node. The third
document in that node, http://www.cvc.uab.es/~jordi/pmor/tsld236.htm, was a broken
link and should be removed by a preprocessing step; there simply wasn’t enough time to
code this.

ﬁidncument organizer =101

search string ‘supponvectormachmes“ enter |

i o, uni-trier.de —|
bo‘ok H

* L] L] * * * * * L]

db

exampl eddi
* - * - * * * * * L]

shrgtoph Christopher J. C. Burges

condit slide pedroso
LJ * L] * * * * :
platt rabert zehe albu link List of publications from the DBLP Biblingraphy Server - FAQ
* L] - L] L * * * * - E

recognit point featur Query the "Home Page Search" Engine
(] [}) |

support SYIT
p‘n - -

L L] * L] * *
1908

* - - - - * * * * - - - -
Christopher J. C. Burges: A Tutorial on Support Vector Machines for Pattern

" o MPEEHERD . - - - - - Recognition. Data Mining and Knowledge Discovery (%) 121-167 (1998)
* - * - * * * PO 1996

war algorithrm acm L Christopher 1. C. Burges: Simplified Support Vector Decision Fules. ICWL 1098
- [- [- -) - - - A2 7177

1992

httpeitwesniy cvc uab es/~jordifpronts|d 236 him
httpifeeeds. informatik.uni-trier.ded~eydhbindices/a-tree/b/Burges: Christopher_J=_C=h
hitpeiiftp.inforratik.rath-aachen.defdblpidbfindice s/a-treefbiBurges:Christopher_J=_C:

Ofer Matan, Henry 3. Baird, Jane Bromley, Christopher J. C. Burges, John 3. Denkeer
, Lawrence D Jackel Yann LeCun, Edwin P D Pednault. Williatm Satterfisld
Charles E. Stenard, Timothy J. Thompson: Feading Handwritten Digite: & ZIP Code
Recognition System. JEEE Commpater 25(7): 59-63 (19923

DBLF: [Home | 3earch: Author, Title | Conferences | Journals] Michae! Lep
| ey @uni-trier. de) Wed Dec 19 15:17:34 2007

D

4]

Figure 11. First document containing Christopher Burges.

locument organizer

=10/

search string supportvector machines| | enter |

hook
-

L * * L] * - * - *
exarnpl eddi
* * * * L] * * * * *
condit slide pedroso christoph
* * * * * * * *
platt robert zehe albu link
* * * * * L] * - *

recognit paint featur
* * L)

* L] * L] *
support SYIM

- * - * - D.D * - *

L * - * L] * - * - *

hiperplano

L * B JJ * L] * L] * *
limit

* * * * L] * * * * *

var algarithm acm
* * * * L] * * * * *

o, uni-trier.de —

dbl

Christopher J. C. Burges

List of publications from the DBLP Bibliography Server

Search Hotne Page with HP Search

1998

Christopher J. C. Burges: &4 Twtonal on Support Vector Machmes for Pattern

3
Recognition. Data Wining and Enowledge Discowery 202): 121-167 (1998)
1996
3 Christopher J. C. Burges: Sitnplified Support Vector Decision Rules. [CML 1996

7177

1992

hittpciveane. cve.Uah.es/~jordifprmoritsd 236.0tm

4

http:ivesn informatik.uni-trier.ded~ley/dbindice sfa-treefiBurges:Christopher_J=_C=h :
hitpiifip.informatik. rwth-aachen.de/dhlpfdblindices/a-treeib/Burges:Christopher_J=_C=

ok

Ofer IMatan, Henry 3. Baird, Jane Bromley, Christopher J. C. Burges, John 8. Denler
, Lawrence D, Jackel, Yann LeCun, Edwin P, D, Pednault, Williarn Satterficld
Charles F. Stenard, Timothy J. Thompson: Reading Handweritten Digits: A ZIP Code
Recognition System. IEEE Computer 25(7): 59-63 (1992)

DBLF: [Home | Search: Author, Tille | Conferences | Journals] MAichael Jey
Ry @uni-trier. de) Wed Dec 19 05:16:2& 2007

4

Figure 12. Second document containing Christopher Burges.

Another good example is the documents shown in Figure 13 and Figure 14 below. They
are the only documents in the collection discussing things like probabilistic models and
maximum likelihood. A strange phenomenon is that the node they’re projected onto is
labeled “platt” although only one document contains this word (it’s the last name of a

researcher for Microsoft, who owns the p

age shown in Figure 14.

E{iducument organizer =10 ﬂ
search string |suppaort vector machines| | enter |
— Return bo Wain units of speech. Howerer the lack of knowledge about| ||
© © O © © © O © © O H bas forced us to look at alternate techrdgues that focu.
exampl eddi Introduction: "representation”
- - - [- - - - - - A state-nf-the-art
topdit sjle 4 PRgUSO chrigtoph 735 Hanahles Hidlten Markow Models (HIMIVD have been the most s
otivation iti i
olatt robert ohe albu link m— for speech recognition. Traditionally the model pararn
- - - - - - - - - - Aihats MNew Ilazimum Likelihood (WL criterion. Likewise, estima
. rec.ggnn pg.im Teaolur i . Mutual Information (WD and Minirom Classificatio
HMM Review: developed for discriminative estimation of the model p
- - - - - Sufgeail &g M parameters using the discriminative techniques is sigrd
Estirnation estimation. There are other classifiers like neural netwe_
- - - » - - - - - - Discrimination estimated discriminatively. Howewer these systems cat
h‘pey:”a,—m 4 model the dynamic nature of speech. In such cases hr
- - [- - - - - - || SVM:
limit SR Principle Bupport Vector Wachines (SVIV) is a new class of ma
- - - [- . - - - - H lan o ! . -
Hyperpianes learns to classify discriminatively. This paradigm has
* « 7 * . o ogiom o « H Optimization: | years with the development of efficient training algori
KL_EIS) that any data can be transformed into a very bigh diro
it e e || - PUMZatION-2 e classified using a simple lineer hyperplane. Though |
hitp:fiwie.isip.msstate.edulpublicationsibooks/msstate_theses/ 898/support_vectors & Linplernentation (especially when the dimension of the feature spaceis|™ |
hitp:ifwsa. research.micros oft. cami-plattd {|| Observations kernels gives an elegant solution to this problem and
even for large tasks. Like neoral network techniques,
Fisher Kernels: classifiers. One would need to handle the dynarmic nat
Fisher Kernels built on a dynamic model like HWIWs
Fisher Information
sher Scores In the proposed research, [will develop a hybrid HWVN_|
1 to LIT L 1 PR bl
D] [ES— B] D

Figure 13. First document containing

probabilistic models and maximum likelihood.

ﬁidocument organizer =101

search string suppoﬁvectormachines“ enter |

Recent Publications =
hook ;
- - ¥ - - - - - -
about improving user interfaces for images, sounds, and documents
exampl eddi
* * * * * * * * * * =
condit slide pedroso chrigtoph Eg o- Leaming o Gaussian Process Prioy for Automatically Generating Music
* * * * * * * * * Flgplists | by 1. Platt, C. Burges, 5. Swenson, C. Weare, A Fheng, Advances in
plgtt o roget P 55 Neural Information Processing Systeme 14, 10 appear.
- rec.ngmt pn.\m fea.tur » - - - o- speech Denoising and Dereverberation Using Probebilistic Models, by H.
S v :Q Attiag, J. Platt, & Acero, L. Deng, Adwvances in Meural Information Processing |
* * * * * * ¥ * - * i Swsterns 13, pp. T58-7d4, (2001) i
© © & © © © © * * * o- AutaAlhur: Clustering Digitad Fhotographs Using Frobabilistic Afodel

Merging , by I. Platt, Proc. IEEE Workshop on Content-Based Access of [mage and

* * hipe‘rplann * * * * * * *
Wideo Libraries 2000, pp. 96-100, (20007,

lirmit
* * * * * * * * * * g
H o- Inductive Learning Algovithrns amd Representations for Text l
. s 2 o . o ogithm o s &M Caegovization , bp 5. Dumais , J. Platt, D. Heckermnan , b Sahami, Tth

International Conference on Information and Knowledge Management (1998)

.. ahout ClearType
hitp:ifawew isip. msstate.edu/publications/hooks/msstate_theses 99%support_vector H

hitpuiiwssw. research.microsoft. comi~jplatt

o- Cptivmal Filteving fov Patterned Displaps | by 1. Platt, IEEE Signal
Processing Letters, 7, 7, pp. 179-20, (2000;.

o- Disploced Filtering for Patterned Displays, by C. Betrisey, J. Blinn, B.
Dresevic, B. Hill, G. Hitcheock, B. Keely, D. Mitchell, 1. Platt, T. Whitted, Proc

Society for Inforrmation Display Symposium, pp. 206-200, (2000}

17 ahomi s rt Vortor Machi 2

Figure 14. Second document containing probabilistic models and maximum likelihood.

The SOM did seem to project documents with distinguishing words onto the same node
in the map. However, it wasn’t always clear if documents in neighboring nodes were
similar, or if they just happened to be projected onto neighboring nodes. Another useful
view in the application would be a list of keywords for a node, like the list of url’s,
instead of just drawing a single keyword on the map.

Conclusions

This paper described a system of four types of agents, and how they can be used together
to organize any set of HTML documents using Self-Organizing Maps. In effect, the
OrganizationAgent learns about the documents in the collection and based on the
contents, assigns documents to discrete points in a two dimensional space. Documents
with similar content are assigned to the same points.

This is a very rough implementation of several recently developed concepts in
Information Retrieval. For example, the WEBSOM project
(http://websom.hut.fi/websom/) has used SOM to organize massive document collections,
on the order of millions of documents, and provides a web-based user interface for
exploring the map. The system presented here is much smaller, but also performs the
mapping in real time on any decent computer and allows the user to organize their own
set of documents.

References

Bloch, J. (2001). Effective Java: Programming Language Guide. Boston, Addison-
Wesley.

Chowdhury, G. C. (1999). Introduction to Modern Information Retrieval. London,
Library Association Publishing.

Gamma, E., R. Helm, et al. (1995). Design Patterns: Elements of Reusable Object-
Oriented Software. Boston, Addison-Wesley.

Hastie, T. and W. Stuetzle (1989). "Principal Curves." Journal of the American Statistical
Association 84(406): 502-516.

Kaski, S. (1998). Dimensionality reduction by random mapping: Fast similiarity
computation for clustering. Proceedings of [IICNN'98, International Joint Conference on
Neural Networks.

Kohonen, T. (2000). Self-Organizing Maps of Massive Document Collections.
International Joint Conference on Neural Networks (IJCNN 2000), Como, Italy.

Kohonen, T. (2001). Self-Organizing Maps. Berlin, Springer.

Lagus, K. and S. Kaski (1999). Keyword selection method for characterizing text
document maps. Proceedings of the Ninth International Conference on Artificial Neural
Networks (ICANN'99).

Roussinov, D., K. M. Tolle, et al. (1999). Visualizing Internet Search Results with
Adaptive Self-Organizing Maps. Proceedings of the ACM SIGIR '99 International
Conference on Research and Development in Information Retrieval, Berkeley, CA.

