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Abstract 
The Self-Organizing Map (SOM) is a popular and well-studied unsupervised learning 
technique.  Much work has been done recently on visualizing the results of the SOM 
algorithm, using static non-interactive approaches.  This paper presents two new SOM 
visualization methods, based on the grand tour and linked brushing.  These new methods 
use animation to show progress of the algorithm in the input space, and interactivity to let 
the user explore the link between the map in input space and feature space.  The new 
methods were implemented in Java using Jsom, a new Java-based SOM package, and 
Orca, a Java-based data visualization package.  Several different data sets are used to 
demonstrate the new methods. 

1 Introduction 
The Self-Organizing Map (SOM) is a very flexible machine-learning tool.  It is 
formulated mathematically as an unsupervised neural network, and during training it can 
be thought of as a non-parametric regression method to fit a low dimensional map to a 
data set’s distribution in higher dimensions in an ordered fashion.  After training, the 
SOM can be used for non-linear projection, mapping points in high dimensional input 
space onto a discrete set of points in a low dimensional feature space. 
 
Researchers have used the SOM in numerous areas.  (Kohonen 2001) claims over 4000 
research papers have been written about SOM since its inception in the early 1980’s, and 
lists applications in machine vision, speech analysis, telecommunications, robotics, 
neurophysiology, chemistry, finance, and many others.   
 
Increasingly, research is being done on how best to visualize the results of SOM and how 
to interpret these results.  For example, (Kaski, Venna et al. 1999) color nodes of the map 
to accentuate cluster structure, (Vesanto 1999) colors nodes of the map based on their 
models’ values of single variables, and (Himburg 1998) links coloring between the map 
in feature space and Sammon’s projection of the map in input space.  These 
visualizations represent the end-results of the SOM algorithm and are all static; that is, 
the appearance of nodes and models is fixed.   
 
In an exploratory setting however, more insight can be gained about the SOM algorithm.  
First, since this is an iterative algorithm, an animation can show exactly how the 
algorithm updates the model vectors of the nodes in the map after each iteration.  Since 
there are a number of parameters needed, (neighborhood, learning rate, etc.) this 
animation can also highlight inappropriate SOM algorithm parameter values.   



Second, allowing the user to interact with several different plots of the map provides a 
greater understanding of the outcome of the algorithm.  Linked brushing (Buja, Cook et 
al. 1996) between a plot of the map in input space and a plot of the map in feature space 
provides this interaction. 
 
Orca (Sutherland, Rossini et al. 2000), a Java-based data visualization package, was used 
for the creation of these new visualizations.  Orca features excellent support for basic 
data visualization tasks such as appropriate data structures, file I/O, and user interfaces, 
allowing researchers to focus their efforts on processing and custom visualizations.  In 
addition, Jsom was created to handle all of the SOM-related computations.  Jsom is a 
flexible, extensible, object-oriented Java-based package for using Self-Organizing Maps. 

2 Self-Organizing Maps 
The SOM (Kohonen 2001) is an unsupervised neural network and can be used for non-
parametric regression, non-linear projection, dimensionality reduction, feature extraction, 
clustering, and visualization depending on the interpretation and use of its results.  Figure 
1 below shows a typical architecture of the neural network. 
 

 
Figure 1.  The SOM as an unsupervised neural network.  The SOM consists of an input layer, where 
the input patterns are presented, and an output layer of connected neurons.  These neurons exist as 

discrete points in some space, in this case 2-D, and each neuron has a weight vector of the same 
dimensionality as the input patterns. 

 
Each neuron, or node, in the output layer has two vectors associated with it that exist in 
two different spaces: feature space and input space.  Feature space is the space in which 
the nodes exist and input space is the space in which the data exists.  The first vector 
describes the position of the node in feature space, and the second represents the weight 
vector of the neuron.  Each neuron has a weight associated with each input variable; the 
lines in Figure 1 represent these weights, and together they form a vector of the same 
dimensionality as the input data.  These weight vectors can also be represented as points 



in input space; in this case, they are referred to as models since they are the input space 
representation of the nodes.  When referring to the map as a neural network, it is natural 
to refer to neurons and weight vectors; when referring to points in feature space and input 
space, nodes and models are used instead. 
 
The goal of the SOM algorithm is to adjust the weight vectors of the neurons to match the 
training data.  One can also think of this as positioning the models of the nodes in input 
space to match the distribution of the data.  The algorithm attempts to do this so that 
nodes near each other in feature space will have models near each other in input space.  
Positioning the models to approximate the data distribution can be thought of as non-
parametric regression, much like discretized principal curves (Hastie and Stuetzle 1989).  
The trained map can then perform non-linear projection of data points in input space, by 
finding the nearest model to the data point and projecting the point onto the model’s node 
in feature space. 
 
Note that the SOM algorithm is not restricted to working with strictly numerical data.  
Patterns can be anything, such as text strings or documents.  The algorithm just needs to 
create model patterns for the nodes, and make these models approximate the distribution 
of the data in an ordered fashion.  However, the SOM algorithm used in this project is 
based on numeric vectors, so that version will be presented here.  The algorithm is 
iterative, and fairly simple: 
 
For each iteration k 
 Pick a data point x(k) 
 Find node c with closest model mi(k) to x(k) 

 Update each model mi(k) 

 
So during iteration k, the algorithm finds the node c with the most similar model to data 
point x in the input space.  Then all of the models are updated by moving them towards 
the data point x.  The neighborhood function n(c,i,k) returns a scaling value that 
determines how far each model moves toward x.  The model of node c moves the farthest 
towards x while models of nodes farther away from c in feature space move less towards 
x in input space (models of nodes “very far away” from c may not move at all).  Also, 
n(c,i,k) goes to zero as k increases so that the models “learn” quickly in the beginning and 
then are more finely adjusted in later iterations.   
 
Thus, n(c,i,k) decreases with both increasing distance between nodes c and i in feature 
space, and with increasing k.  It is this property of the neighborhood function that ensures 
neighboring models in input space will belong to neighboring nodes in feature space, and 
the non-linear projection from input space to feature space will retain the original 
structure of the data. 
 
Many other ways to position the models in input space exist; thus, the previous algorithm 
is not unique.  Many variants on this original SOM algorithm can be found in the 
literature (Kohonen 2001), and will not be presented here. 
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3 The Jsom Package 
Jsom is a Java-based package for working with Self-Organizing Maps.  Utilizing object-
oriented and smart software design principles (Gamma, Helm et al. 1995) (Bloch 2001), 
it is intended to be incredibly easy to use in a variety of applications, from pure number 
crunching to interactive demos, while also being very flexible and supportive of 
customization.  A collection of Java interfaces specifies the different parts involved in the 
SOM algorithm, and is backed by fully functioning default implementation classes, ready 
for use by the user.  Custom implementations are easily integrated into the existing class 
structure since the API refers to interfaces, not concrete classes. 
 
There are four main interfaces in the Jsom package: Algorithm, Data, Map, and 
Parameters.  These represent exactly what they are named for:  the SOM algorithm, the 
training data, the map (nodes and models), and any parameters used by the algorithm, 
respectively.  Figure 2 below shows a UML diagram for these interfaces.   
 
Many concrete implementations of these classes, performing basic functionality, are also 
provided in the Jsom package.  For instance, the following code is a complete program to 
read the training data, initial models, node positions, and node adjacency from files, train 
the map, and print out the resulting models: 
 
import java.io.*; 
import jsom.*; 
import jsom.data.*; 
import jsom.algorithm.*; 
import jsom.algorithm.parameters.*; 
 
public class jsomTest { 
  
 public jsomTest() { 
  Data data = new FileDoubleData(new File("data.txt")); 
  DoubleData nodes = new FileDoubleData(new File("nodes.txt")); 
  DoubleData models = new FileDoubleData(new File("models.txt")); 
  IntegerData adjMatrix = new FileIntegerData(new File("adjMatrix.txt")); 
  Map map = new BasicMap(nodes, models, adjMatrix); 
   
  int iterations = 10000; 
  double initialValue = 0.9d, finalValue = 0.0001d; 
  Metric metric = EuclideanDoubleMetric.getInstance(); 
  ModelUpdater updater = FlowDoubleModelUpdater.getInstance(); 
  LearningRate rate = ExponentialLearningRate.getInstance(initialValue,  

finalValue, iterations); 
  Neighborhood neighborhood = GaussianDoubleNeighborhood.getInstance(rate); 
  PatternSelector selector = BasicPatternSelector.getInstance(); 
  Parameters params = new FlowParameters(iterations, metric, updater,  

neighborhood, selector); 
   
  Algorithm algorithm = new FlowAlgorithm(data, map, params); 
  algorithm.start(); 
   
  System.out.println("models = "); 
  for (int i=0; i<map.count(); i++) { 
   System.out.println("" + i + " = " + map.getModel(i).getPattern()); 
  } 
 } 
  
 public static void main(String args[]) { 
  new jsomTest(); 
 } 
  
} 
 



Specifying these components as interfaces instead of classes creates a very flexible API.  
For instance in the above code example, a FileDoubleData instance is created, which 
implements the Data interface, and is given to the Algorithm.  Any other concrete Data 
implementation could have been used to provide training data to the algorithm.  For 
example, BasicDoubleData, which just wraps a double[][], could have also been used.  
Or, a user could define a custom Data implementation, and give that to the algorithm as 
training data.  This custom implementation could access any data source, such as a 
database or some existing data object. 
 

 
Figure 2.  UML diagram for the four main interfaces in the Jsom package. 

 
The interfaces in Figure 2 also reference several other interfaces: Pattern, Node, and 
Model.  These interfaces represent patterns, nodes, and models of the SOM, respectively, 
and are shown in Figure 3.  Again, Jsom can use any class implementing the Pattern 
interface.  A default implementation, DoublePattern which just wraps a double[], is 
provided with Jsom.  However, a class representing a text string could also implement 
Pattern and be used by Jsom.  In this case, a custom Algorithm would also need to be 
created, to handle the new type of Pattern. 
 

 
Figure 3.  UML diagram for basic data structure interfaces. 



 
Jsom also provides support for event notification (via the AlgorithmListener interface 
and AlgorithmEvent class), multi-threaded use (via the RunnableAlgorithm wrapper 
class), and more fine-controlled algorithms (via the ControllableAlgorithm interface).  
A complete software design description is beyond the scope of this paper, although the 
above descriptions give a flavor of the overall API design.  For more information, please 
see the Jsom website at http://www.public.iastate.edu/~zcox/jsom/. 

4 Implementation in Orca 
Orca is a toolkit for producing useful views of data (Sutherland, Rossini et al. 2000).  It is 
written entirely in Java and provides basic functionality for data visualization such as 
data file parsing, data processing, familiar plots, and user interface management.  The 
software is structured by a pipeline architecture, in which the different pipe sections 
perform different aspects of data processing and rendering.   
 
For example, a typical pipeline starts with a data source pipe, which is responsible for 
reading the data from a file into an internal array.  This raw data (which is assumed in 
this project to be in arbitrary p-dimensions) is then passed to a standardization pipe where 
each variable is standardized, for instance to the range [-1, 1] or [0, 1].  The p-
dimensional data may now be projected to a lower d-dimension for display (d = 2 in this 
project).  The d-dimensional data is then converted to display coordinates and rendered 
for the user in a specific plot.  The aforementioned pipeline is a basic, typical setup 
completely provided by core Orca classes. 
 
This core package is also built heavily on Java interfaces, allowing Orca to be extended 
easily by end-users to create their own data processing and custom renderings.  By 
providing a few specified methods these custom classes plug-in to the basic API, and 
gain access to the internal data structures of Orca.  This saves an immense amount of 
development time, as the researcher can focus on specific experimental ideas instead of 
the rudimentary tasks done by the existing Orca pipe sections.  Orca has been used to 
analyze multivariate time and space measurements in relation to studying the El Nino 
effect from buoys in the Pacific Ocean (custom time and spatial views of the data were 
created).  It has also been used for research on interaction with graph data, where the 
nodes and edges have multiple variables. 
 
Orca provides a grand tour (Swayne, Cook et al. 1998) (Buja, Cook et al. 1996) engine 
for projecting high-dimensional data to 2-D for display.  The grand tour creates 2-
dimensional projections of the p-dimensional data, and rotates smoothly between the 
projections.  The smooth rotation creates a tour, or movie, of the data, which is very 
useful in determining the structure and features of a multivariate data set.   
 
Orca also offers a basic scatter plot for rendering the data projected by the grand tour.  
However, this needed to be extended for rendering the models and connecting lines.  
Also, a custom scatter plot was needed for rendering the nodes in feature space.  Figure 4 
below shows the resulting Orca pipeline for the SOM visualization project.  Pipe sections 
shaded gray are custom sections created for this project, while un-shaded sections are 
provided by Orca.  Using the basic Orca pipe sections saved a good deal of time. 



 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Orca pipeline for the SOM visualization project.  Custom pipe sections are shaded gray. 

 
The above pipeline creates the two Orca plot windows shown in Figure 5 below.  The 
main plot shows the grand tour view of the data points and models in input space.  The 
user interface on this window controls execution of the algorithm, the map topology, and 
configures the brushing used on the plot.  The second plot shows the nodes in feature 
space, and its user interface simply configures the brushing type. 
 

  
Figure 5.  The two Orca plot windows used to investigate the new SOM visualization methods.  The 

plot on the left shows a snapshot of the grand tour, while the plot on the right shows the nodes in 
feature space. 
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5 Animation of SOM Algorithm 
The first new SOM visualization method is an animation of the algorithm created in the 
grand tour view.  This animation shows the models being positioned in the input space by 
the SOM algorithm.  Figure 6 shows an example, using a 3-D uniformly distributed data 
set, where the variance of the third variable is very small.  The top left plot shows an 
early iteration, and the algorithm progresses to the end in the bottom right plot.  Note that 
there are many iterations of the algorithm in between these snapshots. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6.  Successive iterations of the SOM algorithm, shown in an animation.   

 
The grand tour (Swayne, Cook et al. 1998) (Buja, Cook et al. 1996) was used as the 
method of choice for showing the data and models in input space for two main reasons.  
First, since the training data is multivariate and we want to view the algorithm 
positioning the models in input space with the data, some projection method is needed.  
The grand tour is a good method because it shows the data from different angles, 
allowing inherent structure of the data to be observed.  Second, Orca provides trivial 
access to grand tour projections.  Note that the grand tour is not the only possible 
projection method for visualizing the models and training data in input space; many other 



methods (PCA, CCA, projection pursuit, Sammon’s mapping, etc.) could have also been 
used. 

 
When viewed on-screen in real time, you can really see which model is being updated, 
and “pulling” the rest of the map along with it.  This model corresponds to node c (see 
section 2 Self-Organizing Maps above), and the “elasticity” of the map is controlled by 
the neighborhood function, n(c,i,k).  Also, it is very informative to actually see the 
models being stretched around the data in input space.  The animation therefore provides 
confidence in the proper functioning of the SOM algorithm.  A static plot of the end-
results of the algorithm may not provide this certainty. 
 
The animation also provides a means for checking the parameters of the algorithm.  For 
instance, almost all of the models should move towards the data point x during early 
iterations of the algorithm, while during later iterations only the models corresponding to 
node c and its immediate neighbors should move, and they should not move very far.  If 
the neighborhood function is not performing this behavior, it can be easily identified 
during the animation and fixed.  Watching the animation helped immensely during 
debugging of the Jsom code. 

6 Linked Brushing Between Grand Tour View and  
Map View 

Linked brushing (Buja, Cook et al. 1996) is a powerful graphical way of posing queries, 
or asking questions, about data.  Multiple different views of the same data can be linked; 
a user can then query one view and have the other views provide the response to the 
query.  For example, pair wise scatterplots of a multivariate data set can be graphically 
linked.  The user can then brush data points in one plot to a new color and the same data 
points in the other plots will be updated to this color as well.  In this case, the query is 
conditioning on the two variables in the first scatter plot.  It basically means, “How do 
variables x1 and x2 affect the values of other variables in this data set?”   
 
Linked brushing can also be used to pose queries about the SOM.  By linking multiple 
views of the SOM, brushing on one view can ask a question which in turn is answered in 
another view.  Three types of linked brushing are described in this paper: 

• Brushing nodes and models 
• Connecting data point brushing to node and model brushing 
• Connecting node and model brushing to data point brushing 

 
These brushing types provide answers to three different questions: 

• Where did the algorithm position certain models in the input space? 
• Which node(s) in feature space are certain data points projected to? 
• Which data point(s) in input space are projected on to certain nodes in feature 

space? 
 
Brushing nodes in the map view tells you where the models of those nodes are located in 
the tour view.  This is related to the method in (Himburg 1998) except it is interactive.  
The user can brush any node in the map view to any color, and the corresponding model 



in the tour view will be brushed in real time.  Brushing can also be done on models in the 
tour view.  In this case, brushing tells you the nodes in the map view that the brushed 
models belong to.  This type of brushing can be used to gain more insight into the effects 
of the SOM algorithm.   
 

  
Figure 7.  Brushing nodes in the map view (on the right) automatically brushes their corresponding 

models in the tour view (on the left).  This type of brushing tells the user where the algorithm 
positioned the models in input space. 

 
Figure 7 shows an example of this type of brushing.  The SOM algorithm positioned 
models of the map as shown in the tour view on the left.  By brushing nodes in the map 
view on the right, it is easy to see the corresponding models in the tour view.  Another 
realization is that the algorithm seems to have “flipped” the map.  There is no 
requirement that the SOM algorithm must preserve any relative positions; just that 
neighboring nodes in feature space should have neighboring models in input space. 
 
The second type of brushing tells you how data points in input space are projected onto 
the nodes of the map in feature space.  The user can brush any group of points in the tour 
view, and the nodes they are projected on to are also brushed in the map view.  For 
convenience, the corresponding models in the tour view are also automatically brushed. 
 

  
Figure 8.  Brushing data points in the tour view (on the left) automatically brushes the nodes they are 

projected on to in the map view (on the right).  This type of brushing tells the user how the data 
points are projected from input space to feature space. 



 
Several data points in the tour view of Figure 8 have been brushed to different colors and 
projected on to the map view by linked brushing.  This projection is done by simply 
finding the nearest model to the brushed data point in input space (using the Euclidean 
distance metric), and brushing the corresponding node in feature space.  Thus, the user 
can interactively project data points from input space to feature space. 
 
The third type of brushing tells you the data points in input space that are projected onto 
certain nodes in feature space.  The user can brush nodes in the map view and all data 
points projected onto those brushed nodes are automatically brushed in the tour view.  
Models can also be brushed in this way in the tour view.  In this case, all data points that 
are projected onto the nodes of those models are brushed in the tour view.  The 
corresponding nodes in the map view are brushed as well. 
 

  
Figure 9.  Brushing nodes in the map view (on the right) automatically brushes data points in the 

tour view (on the left) that are projected onto the brushed nodes.  This type of brushing tells the user 
all of the data points in input space that are projected onto a specific node in feature space. 

 
Figure 9 shows an example of this third type of brushing.  Several nodes in the map view 
have been brushed with different colors (the same colors as in Figure 7).  The data points 
that are projected onto these nodes are automatically brushed in the tour view.  This type 
of brushing can roughly show the “projection boundaries” for the different nodes.   

7 Applications 
Several examples were presented in the previous section on linked brushing.  The data set 
used in these examples is artificial; it is uniformly distributed in three dimensions, with a 
much smaller variance on the third variable.  Since SOM is useful not only on toy data 
sets, an example with a real world data set is in order. 
 
The data set presented here consists of various measurements on fleas.  It consists of 75 
data points (each representing a flea), 6 variables, and contains 3 classes of fleas.  The 
classes of fleas are somewhat easily separated, by watching the grand tour.  Each class 
tends to “move” across the screen in a different direction than the other classes during the 
tour.  Figure 10 shows a snapshot of the tour, where the classes are visually separable. 
 



 
Figure 10.  Grand tour projection of the flea data set.  The three classes are visually separable in this 

projection. 

 
After fitting the SOM to this data, the data points in the tour view are brushed according 
to the classes seen in Figure 10.  Figure 11 below shows the results of this brushing in the 
tour view.  The data points are brushed without even seeing the models – the models are 
only added to the plot after the data points have been brushed.   
 

   
Figure 11.  The data points in Figure 10 are brushed according to the visible classes (far left).  The 

models are then added to the tour view, with adjacency connections (middle) and without (far right). 

 
You can see from the middle plot of Figure 11 that there are a much higher number of 
connections between models within the clusters than there are between models in 
different clusters.  This suggests that the models within the clusters belong to adjacent 
nodes in the feature space.  Naturally, this can be examined from the map view, shown 
below in Figure 12. 
 



 
Figure 12.  Map view after brushing in Figure 11.  Note that the data points in the clusters in input 

space are projected to adjacent nodes in feature space.  Also note the dark-colored nodes, which have 
no data points projected on to them. 

 
It is very easy to see that data points in the same cluster in input space are projected on to 
adjacent nodes in feature space from the map view in Figure 12.  Also, note that there are 
four nodes in Figure 12 that have no data points projected on to them, colored with dark 
blue.  These nodes appear to be on the boundaries between the three clusters.  Inspecting 
the tour view in Figure 11 again, it is apparent that these “empty” nodes do in fact lie 
between the clusters in input space. 
 
By observing the grand tour, visually picking out clusters in the data, running the SOM 
algorithm, and brushing the data points based on their cluster, a sort of exploratory 
clustering has been performed.  The SOM algorithm seems to agree with the clusters; 
remember that the algorithm positions the models of neighboring nodes in feature space 
to similar regions of input space.   
 
When brushing the data points in the tour view, the following query is effectively posed: 
“Are these data points, which appear to be in the same clusters in input space, projected 
onto similar regions of feature space?”  By observing the response in the map view, 
where the same colors appear in the same regions of the map and there are “empty” nodes 
between these regions, the answer is a definite “yes”. 
 
This example shows that the SOM algorithm indeed positions the models in input space 
in an ordered fashion according to their corresponding nodes in feature space, and 
preserves distance relations among data points when projecting from input space to 
feature space.  Also, the SOM algorithm has effectively done feature extraction on this 
data set.  Originally, a supervised learning algorithm would have to create decision 
functions in 6-dimensional input space.  However, after non-linear projection by the 
SOM, the supervised learning algorithm then only has to work in 2-D feature space, 
greatly simplifying the learning task.  It is also obvious from the map view in Figure 12 
that the projected classes are linearly separable in feature space. 

8 Conclusions 
This paper has presented two new methods for visualizing Self-Organizing Maps.  The 
first, based on an animation of the SOM algorithm (or learning process) and the grand 



tour shows how the algorithm positions the models in input space to approximate the 
data’s distribution.  The second method uses linked brushing between two different views 
of the SOM to allow a user to pose queries about the mapping between input space and 
feature space.  Examples using two different data sets show the effectiveness of these two 
new visualization methods. 
 
Although the tour view and map view are both good visual representations of the data 
and the SOM, they are definitely not the only possible informative plots.  Many other 
ways of visualizing the data and models in input space are possible.  These other views 
could also utilize the two new SOM visualization methods: they could show the 
animation of the SOM algorithm, and provide linked brushing between all of the views.  
Orca provides this linking capability, and the Jsom package handles the SOM algorithm.  
All that is needed for new input space views are new Orca pipe sections that perform the 
appropriate projection from input space to 2-D and render the data and models to the 
screen. 
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