
Using the SOM Visualization Software

Obtaining the Software
The SOM visualization software can be downloaded from the Internet at
http://jsomap.sourceforge.net/ee547/somviz.zip. Once somviz.zip is downloaded, simply
unzip it to some directory. In that directory, a new directory called somviz is created that
contains all of the relevant files.

The SOM visualization software is based on three packages:

• JSOMap � self-organizing maps � http://jsomap.sourceforge.net
• Orca � data visualization� http://software.biostat.washington.edu/orca
• Jama � matrix operations used by Orca � http://math.nist.gov/javanumerics/jama/

The somviz.zip file contains a .jar file for each package. Additionally, it contains a data
directory where data files are stored.

Since the SOM visualization software is 100% Java, you must have a Java virtual
machine installed on the computer you are using. The software should work with any
jvm version 1.2 or higher (only version 1.3 has been fully tested but 1.2 should work).
See http://java.sun.com for details on obtaining a Java virtual machine if one is not
already installed on your computer.

Data files
The data directory contains these five data files:

• 3dclusters.txt � three normally distributed clusters in three dimensions
• flea2.txt � three clusters in six dimensions
• uniform2.txt � uniformly distributed in three dimensions
• curve.txt � slight curve in three dimensions
• cross4d.txt � four dimensional cross

You can also use your own data files, as long as they are plain text, with data in matrix
form; that is, rows are data points and columns are variables. There also must be a string
label for each column on the first line of the file.

Starting the Program
To start the SOM visualization software, simply execute the following on a command
line while in the somviz directory

java –cp .;jsomap.jar;orca.jar;jama.jar examples.SOMExample data/DATAFILE.txt

where DATAFILE.txt is one of the data files in the data directory.

http://jsomap.sourceforge.net/ee547/somviz.zip
http://jsomap.sourceforge.net/
http://software.biostat.washington.edu/orca
http://math.nist.gov/javanumerics/jama/
http://java.sun.com/

For those interested in what this command actually does, it basically puts the current
directory and the three .jar files on the classpath, instructs the Java virtual machine to call
the main method in the examples.SOMExample class, and uses the specified data file.

Running the SOM Algorithms
When the program starts, you should see the following two windows:

Figure 1. The two windows shown when the program starts. The grand tour view is on the left and

the map view is on the right.

We�ll focus on the tour view (the window on the left of Figure 1) first. At this point, it
might be a good idea to drag the bottom-right of the window out a bit, to make it bigger
(some of the tabs are too big and won�t fit in the window at this size).

Next, select the tour tab to access the grand tour controls, shown in Figure 2. The main
thing we�ll use on this tab is the rotation speed slider, which controls the speed of the
tour. The tour increases speed as the slider moves to the right. Initially the tour is
paused, so drag the slider to about the middle of the range to get it going at a decent
speed. Also, if the animation looks choppy, try moving the frames per second slider to
the right to increase the number of frames shown per second.

Figure 2. The tour tab. This tab shows the controls for the grand tour.

Now that the tour is running, you can see both the data points (the small dots) and the
map (the larger open circles are the models and the lines between them show the map
topology). The models of the map are randomly initialized in the input space, so the map
really looks like a mess.

The next step, and probably the most exciting, is to run the SOM algorithm. Click on the
som tab to show the SOM algorithm controls. You should see a user interface like the
one in Figure 3. It may look a little confusing at first, but don�t worry, we�ll cover
everything in a minute. Click the start button (at the top left) to start the algorithm, and
watch the map organize itself!

Figure 3. The som tab. This tab shows the controls for the SOM algorithms.

Figure 4. An example of a trained map.

After pressing the start button, you should see the map starting to bend and warp around
the data, becoming more like an organized surface. To speed up or slow down the
algorithm, move the delay slider to the right or the left, respectively. Eventually the
algorithm will finish and the map will be fully trained on the data. Figure 4 shows what
the map should look like after the SOM algorithm is done training it. If you�re not
interested in what all of the other controls on the som tab do, feel free to skip to the next
section to learn about brushing.

The control panel
We�ve already seen what the start button does; the other buttons in the control panel do
useful things too. While the algorithm is running, you can pause it by pressing the pause
button and stop it by pressing the stop button (pretty straightforward, huh?). When the
algorithm is paused, pressing the step button performs the next iteration of the algorithm.
Thus, you can step through iterations one at a time.

The delay slider
As mentioned previously, the delay slider controls the iteration speed of the algorithm.
More accurately, the position of the slider determines the amount of delay between
iterations of the algorithm. When the slider is all the way to the left there is no delay
between iterations and when it�s all the way to the right there is a 200-millisecond delay.

The map panel
The map panel controls the topology of the map. You can choose either a 1-D map (a
line of nodes) or a 2-D map (a grid of nodes), and specify how many nodes should be in
the map. In 2-D mode, you can also select either a rectangular or hexagonal map
topology. Pressing the reset models button (surprise!) randomly distributes the models
through the input space.

The online tab
There are currently two algorithms available � the online version and the batch version.
When the online tab is selected, the online algorithm is used. Recall that the online
algorithm performs the following steps iteratively:

1. Select the next pattern)x (k

2. Find the winning node r with the most similar model to x c
()k

() ()()[]k
i

k

ic mxr ,dminarg=

3. Move the model of the winning node, and its neighbors, towards ()kx
() () () ()[]kik

ic
k
i

k
i k mxrrmm −+=+ *),,n(1

The neighborhood function, , controls how far each model moves, based on
the winning node r

(kic ,,n rr)

)

im
c, the model�s node ri, and the current iteration k. The neighborhood

function can also be written as
() () ()kkk icic ,,K*α,,n rrrr =

where α is some monotonically decreasing function of k called the learning rate and
 is some kernel function whose width decreases with k.

()k
ki ,(c ,K rr

The online tab allows the user to configure several parts of the online algorithm,
including

• Number of iterations
• Type of distance metric
• Type of neighborhood function
• Initial and final values of the neighborhood function
• Type of learning rate function
• Initial and final values of the learning rate function

The batch tab
The batch algorithm is a bit different than the online algorithm. Instead of considering a
single pattern at a time, all of the patterns are considered during each iteration. The batch
algorithm performs the following steps iteratively:

1. Assign each pattern x to the node rj with the most similar model mj. Each node rj
has a set Rj of patterns that were assigned to it.

2. Update each model based on the patterns assigned to its node and to its neighbors�
nodes.

()
()

()∑

∑ ∑ 










=
∈+

j
jji

j
ji

Rp
p

k
i Rk

k
j

*,,K

,,K*
1

rr

rrx
m

Again, ()kji ,,K rr is the neighborhood function, and computes how much the patterns

assigned to node rj affect the new model of node r(1+k
im

)
i. Note that there is no learning

rate used in the batch algorithm.

The batch tab allows the user to configure several parts of the batch algorithm, including

• Number of iterations
• Type of distance metric
• Type of neighborhood function
• Initial and final values of the neighborhood function

Interacting with the Grand Tour View
Running the SOM algorithm and visualizing the map in the same space as the data is very
interesting, but there is more that we can do. Select the models viz tab to display the
visualization controls for the grand tour view. This tab is shown in Figure 5 below.

Figure 5. The "models viz" tab. This tab shows the visualization controls for the grand tour view.

There are two sets of controls on this tab: the brushing controls and the rendering
controls. The rendering controls are simple, so we�ll discuss them first. There are four
options for rendering, and you can turn the options on or off by selecting or deselecting
the check boxes. You should try checking and unchecking the boxes to see what they do
(they do exactly what they say).

The last rendering option controls the color of the connection lines between the models.
If it�s unchecked, the lines are simply colored black. If it�s checked, the ends of the
connection line are colored to match the color of the corresponding model, and the color
follows a gradient between the two ends. Note that selecting this option generally makes
the animation choppy, as calculating the color gradient is quite computationally
expensive.

Linked brushing is an important data visualization technique. If multiple plots of the
same data are linked, changing the appearance of the data in one plot also changes the
appearance of the data in the other plots. The grand tour view and the map view are
linked, and there are four different types of brushing we can do. To perform brushing,

just select the brush tab, click on a color, and then drag a rectangle around the data you
want to brush. It�s that easy!

Brushing data points
Since the map view does not show the data points, selecting this option and brushing the
data points in the tour view only colors the points in the tour view. If there were another
type of plot linked to the tour view, like a scatter plot matrix, this would be a useful form
of brushing.

Brushing models
Each node in the map view has a corresponding model in the tour view. If this option is
selected, brushing on the models in the tour view also brushes their corresponding nodes
in the map view. This type of brushing lets you find out exactly where a certain model is
in the map. Figure 6 shows an example of brushing models.

Figure 6. Example of brushing models in the tour view.

Connecting data point brushing to model brushing
One use for a SOM is projection. Basically, once the SOM is trained, a pattern can be
projected onto a node of the map by finding the most similar model and assigning the
pattern to that model�s corresponding node. You can interactively perform this
projection by brushing a data point in the tour view. The model and node that the data
point is projected to are then also brushed to the same color. Figure 7 shows an example
of connecting data point brushing to model brushing.

Figure 7. Example of connecting data point brushing to model brushing.

Connecting model brushing to data point brushing
You can also do the reverse of the previous type of brushing. Selecting this option, you
can brush a model in the tour view, and all of the data points that project to that model
will also be brushed. This type of brushing is useful for seeing how the map partitions
the data. Figure 8 shows an example of connecting model brushing to data point
brushing.

Figure 8. Example of connecting model brushing to data point brushing.

Interacting with the Map View
Now let�s turn out attention to the map view. The map view just shows the map in
feature space (either 1-D or 2-D). This probably isn�t that interesting until we can start
interacting with the map view. Select the nodes viz tab, and we�ll explain how to do this
interaction.

Figure 9. The "nodes viz" tab. This tab shows the visualization controls for the map view.

The nodes viz tab, shown in Figure 9, is very similar to the models viz tab that we looked
at earlier. It has basically the same rendering controls, but only two brushing options.
There are no data points in the map view, so the two data point brushing options that
were available for the tour view are not applicable to the map view. Let�s discuss the two
options that are available.

Brushing nodes
This type of brushing is similar to brushing models in the tour view. Brushing a node in
the map view also brushes its model in the tour view.

Connecting node brushing to data point brushing
Using this brushing option, you can project data points to the nodes in map, much like the
second type of model brushing in the tour view. Brushing a node in the map view
brushes all of the data points in the tour view that project to that node.

	Obtaining the Software
	
	Data files

	Starting the Program
	Running the SOM Algorithms
	
	The control panel
	The delay slider
	The map panel
	The online tab
	The batch tab

	Interacting with the Grand Tour View
	
	Brushing data points
	Brushing models
	Connecting data point brushing to model brushing
	Connecting model brushing to data point brushing

	Interacting with the Map View
	
	Brushing nodes
	Connecting node brushing to data point brushing

